
Copyright © 2004 - The OWASP Foundation

Permission is granted to copy, distribute and/or modify this document 

under the terms of the GNU Free Documentation License.

The OWASP Foundation

OWASP

http://www.owasp.org

OWASP Top 10 Vulnerabilities: 

Panel Discussion

Sebastien Deleersnyder

CISSP

Sep, 2005

sdl@ascure.com



OWASP 2

Agenda

<Panel Introduction
<OWASP Top 10
<Panel Discussion



OWASP 3

Agenda

<Panel Introduction
<OWASP Top 10
<Panel Discussion



OWASP 4

Panel Introduction

<Erwin Geirnaert, Security Innovation 
<Dirk Dussart, Belgian Post 
<Eric Devolder, Mastercard 
<Herman Stevens, Ubizen 
<Frank Piessens, KU Leuven



OWASP 5

Agenda

<Introduction
<OWASP Top 10
<Panel Discussion



OWASP 6

OWASP Top 10 

A1 Unvalidated Input

A2 Broken Access Control

A3 Broken Authentication and Session Management

A4 Cross Site Scripting (XSS) Flaws

A5 Buffer Overflows

A6 Injection Flaws

A7 Improper Error Handling

A8 Insecure Storage

A9 Denial of Service

A10 Insecure Configuration Management



OWASP 7

1. Unvalidated Input

<HTTP requests from browsers to web apps
4URL, Querystring, Form Fields, Hidden Fields, 

Cookies, Headers

4Web apps use this information to generate web pages

<Attackers can modify anything in request
4WebScarab

<Key Points:
4Check before you use anything in HTTP request

4Canonicalize before you check

4Client-side validation is irrelevant

4Reject anything not specifically allowed
§ Type, min/max length, character set, regex, min/max value…



OWASP 8

2. Broken Access Control

<Access control is how you keep one user away 
from other users’ information

<The problem is that many environments provide 
authentication, but don’t handle access control 
well
4Many sites have a complex access control policy
4Insidiously difficult to implement correctly

<Key Points
4Write down your access control policy
4Don’t use any “id’s” that an attacker can manipulate
4Implement access control in a centralized module



OWASP 9

3. Broken Authentication and Session Management

<Authentication

4Handling credentials across client-server gap

4Backend authentication credentials too

<Session Management

4HTTP is a “stateless” protocol. Web apps need to 

keep track of which request came from which user

4“Brand” sessions with an id using cookie, hidden field, 

URL tag, etc…

< Key Points

4Keep credentials secret at all times

4Use only the random sessionid provided by your 

environment



OWASP 10

4. Cross-Site Scripting (XSS) Flaws

<Web browsers execute code sent from websites

4Javascript

4Flash and many others haven’t really been explored

<But what if an attacker could get a website to 

forward an attack!

4Stored – web application stores content from user, 

then sends it to other users

4Reflected – web application doesn’t store attack, just 

sends it back to whoever sent the request

<Key Points

4Don’t try to strip out active content – too many 

variations. Use a “positive” specification.



OWASP 11

5. Buffer Overflows

<Web applications read all types of input from users
4Libraries, DLL’s, Server code, Custom code, Exec

<C and C++ code is vulnerable to buffer overflows
4Input overflows end of buffer and overwrites the stack
4Can be used to execute arbitrary code

<Key Points
4Don’t use C or C++
4Be careful about reading into buffers
4Use safe string libraries correctly



OWASP 12

6. Injection Flaws

<Web applications involve many interpreters
4OS calls, SQL databases

<Malicious code
4Sent in HTTP request
4Extracted by web application
4Passed to interpreter, executed on behalf of web app

<Key Points
4Use extreme care when invoking an interpreter
4Use limited interfaces where possible 

(PreparedStatement)
4Check return values



OWASP 13

7. Improper Error Handling

<Errors occur in web applications all the time
4Out of memory, too many users, timeout, db failure
4Authentication failure, access control failure, bad input

<How do you respond?
4Need to tell user what happened (no hacking clues)
4Need to log an appropriate (different) message
4Logout, email, pager, clear credit card, etc…

<Key Points:
4Make sure error screens don’t print stack traces
4Design your error handling scheme
4Configure your server



OWASP 14

8. Insecure Storage

<Use cryptography to store sensitive information
4Algorithms are simple to use, integrating them is hard

<Key Points
4Do not even think about inventing a new algorithm
4Be extremely careful storing keys, certs, and passwords
4Rethink whether you need to store the information
4Don’t store user passwords – use a hash like SHA-256

<The “master secret” can be split into two locations 
and assembled
4Configuration files, external servers, within the code



OWASP 15

9. Denial of Service

<Difference between attack and ordinary traffic?
4IP address filtering?
4DDOS, Slashdotted?
4Account lock-outs
4Abuse error, consume resources

<Key Points
4Limit resource allocation
4Use quotas
4Avoid “expensive” operations
4Graceful handling of errors



OWASP 16

10. Insecure Configuration Management

<All web and application servers have many 
security-relevant configuration options
4Default accounts and passwords
4Unnecessary default, backup, sample apps, libraries
4Overly informative error messages
4Misconfigured SSL, default certificates, self-signed certs
4Unused administrative services

<Key Points:
4Keep up with patches (Code Red, Slammer)
4Use Scanning Tools (Nikto, Nessus)
4Harden your servers!



OWASP 17

OWASP Top 1O Success

<E.g. referenced by payment card industry, Federal Trade 
Commission, US gov.

<Used by Sprint, IBM Global Services, Cognizant, 
Foundstone, Strategic Security, Bureau of Alcohol, 
Tobacco, and Firearms (ATF), Sun Microsystems, British 
Telecom, Swiss Federal Institute of Technology, Sempra 
Energy, Corillian Corporation, A.G. Edwards, Texas Dept 
of Human Services, Predictive Systems, Price 
Waterhouse Coopers, Best Software, Online Business 
Systems, ZipForm, Contra Costa County, SSP Solutions, 
Recreational Equipment, Inc. (REI), Zapatec, Cboss 
Internet, Samsung SDS (Korea), Norfolk Southern, Bank 
of Newport

<part of curriculum at Michigan State University and the 
University of California at San Diego



OWASP 18

Agenda

<Introduction
<OWASP Top 10
<Panel Discussion



OWASP 19

Panel Discussion

<Does the Top 10 improve web application security?

<Are we talking vulnerabilities, solutions or threats?

<Can we base our best practices / standards on the Top 

10?

<Should the Top 10 be incorporated in curricula?

<How to test your web site security on the Top 10?

<Do we need localized versions of the Top 10?

< Is the OWASP Top 10 still necessary?

<How to update the Top 10? 

4Other format?

4Survey?

4…


