A Spire

Advanced Software Protection: Integration, Research, Exploitation

Bjorn De Sutter bjorn.desutter@ugent.be

18 Oct 2016

Belgian OWASP Chapter Meeting

Man-At-The-End (MATE) Attacks

Man-At-The-End (MATE) Attacks

 developer boards
 screwdriver
 JTAG debugger

 Aspire : Advanced Software Protection: Integration, Research and Exploitation

Economics of MATE attacks

5

Economics of MATE attacks

Assets and security requirements

8		
Asset category	Security Requirements	Examples of threats
Private data (keys, credentials, tokens, private info)	Confidentiality Privacy Integrity	Impersonation, illegitimate authorization Leaking sensitive data Forging licenses
Public data (keys, service info)	Integrity	Forging licenses
Unique data (tokens, keys, used IDs)	Confidentiality Integrity	Impersonation Service disruption, illegitimate access
Global data (crypto & app bootstrap keys)	Confidentiality Integrity	Build emulators Circumvent authentication verification
Traceable data/code (Watermarks, finger-prints, traceable keys)	Non-repudiation	Make identification impossible
Code (algorithms, protocols, security libs)	Confidentiality	Reverse engineering
Application execution (license checks & limitations, authentication & integrity verification, protocols)	Execution correctness Integrity	Circumvent security features (DRM) Out-of-context use, violating license terms

10

1. Reference architecture for protected mobile services

2. Software protection techniques and integrated plugin-based tool flow

3. Decision Support System

- attack models & evaluation methodology
- security metrics
- experiments with human subjects
- public challenge
- 2. Software protection techniques and integrated plugin-based tool flow

Cookbook for combining protections Why?

13

How to combine multiple protections?

How do the individual protections actually work?

14

How to combine multiple protections?

How do the individual protections actually work?

Aspire

Bytecode 2

VM

15

- How to combine multiple protections?
 - How do the individual protections actually work?

How to combine multiple protections?

How do the individual protections actually work?

Data Hiding	Algorithm Hiding	Anti-Tampering	Remote Attestation	Renewability	

- data obfuscations
- white box cryptography (static keys, dynamic keys, time-limited)
- diversified crypto libraries

How to combine multiple protections?

How do the individual protections actually work?

Data Hiding	Algorithm Hiding	Anti-Tampering	Remote Attestation	Renewability
	control flow ob	ofuscations		
multithreaded crypto				
instruction set virtualization				
	code mobility			
	self-debugging	g		
	client-server c	ode splitting		

How to combine multiple protections?

How do the individual protections actually work?

Data Hiding	Algorithm Hiding	Anti-Tampering	Remote Attestation	Renewability
		 code guard static and d reaction me client-serve 	s lynamic remote atte echanisms er code splitting	estation

How to combine multiple protections?

How do the individual protections actually work?

Data Hiding	Algorithm Hiding	Anti-Tampering	Remote Attestation	Renewability	

- native code diversification
 - bytecode diversification
- renewable white-box crypto
- mobile code diversification
- renewable remote attestation

- How to combine multiple protections?
 - How do the individual protections actually work?
 - How do the protections compose?
 - Do the protections share components?
 - If protections compose, are there phase-ordering issues?
 - Which protections/components need to be combined and how?
 - Where is 1 + 1 > 2 in terms of protection strength?
 - What is the combined impact on software development life cycle?

Part 2: ASPIRE Compiler Tool Chain

21

2. Software protection techniques and integrated **plugin-based** tool flow

- Python Dolt compiler flow
- JSON configuration scripts
- invokes chain of +/- independent tools
- TXL source code rewriting
- Diablo link-time binary rewriting

Source code annotations

static const char ciphertext[] __attribute__ ((ASPIRE("protection(wbc,label(ExampleFixed),role(input),size(16))"))) = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f };

static const char key[] __attribute__

((ASPIRE("protection(wbc,label(ExampleFixed),role(key),size(16))")))

= { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff };

char plaintext[16] __attribute_

((ASPIRE("protection(wbc,label(ExampleFixed),role(output),size(16))")))

_Pragma ("ASPIRE begin protection(wbc,label(ExampleFixed),algorithm(aes),mode(ECB),operation(decrypt)")")
decrypt_aes_128(ciphertext, plaintext, key);
_Pragma("ASPIRE end");

Source Code rewriting

Binary Code Rewriting

Aspire : Advanced Software Protection: Integration, Research and Exploitation

24

Part 3: Decision Support

- Knowledge Base
- Complexity & Resilience Metrics
- Protection Strength Evaluation Methodology
- Optimization strategies

Validation & Demonstration

- □ three real-world use cases
 - software license manager
 - one-time password generator
 - DRM protection
- security requirements from industry
 - functional requirements
 - non-functional requirements
 - assurance requirements
- dynamically linked Android 4.4 ARMv7 libraries
- penetration tests by professional pen testers

Validation & Demonstration

27

- controlled experiments with academic hackers
- public challenge and bounties

More resources

- https://www.aspire-fp7.eu
 - papers
 - public reports
 - contact info
- https://github.com/aspire-fp7
- <u>https://github.com/diablo-rewriter</u>
- Youtube channel: ASPIRE-FP7 Software Protection Demonstration

Aspire Grant Agreement No 609734

The Aspire project has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number 609734.

If you need further information, please contact the coordinator: Bjorn De Sutter, Ghent University Technologiepark-Zwijnaarde 15, B-9052 Gent, Belgium Tel: +32 9 264 33 67 Fax: +32 9 264 35 94

29

Email: coordinator@aspire-fp7.eu Website: https://www.aspire-fp7.eu

The information in this document is provided "as is", and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.