
https://Pragmatic Web Security.com

DR. PHILIPPE DE RYCK

JWT SECURITY

@PhilippeDeRyck

@PhilippeDeRyck

@PhilippeDeRyck

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

Auth0 Ambassador / Expert

SecAppDev organizer

https://pragmaticwebsecurity.com

I help developers with security

Academic-level security training

Hands-on in-depth online courses

Security advisory services

Not Jim

Jim

@PhilippeDeRyck 5

1

JWT Signature Schemes

3
Ridiculous JWT
vulnerabilities

2

JWT Key Management

4

Quiz & Summary

@PhilippeDeRyck

JWT SIGNATURE SCHEMES

? A

B

C

By default, JWTs are …

Base64 encoded

Signed

Encrypted

@PhilippeDeRyck

@PhilippeDeRyck

Using the java-jwt library to decode a JWT

1
2
3
4
5
6
7

String token = getTokenFromUrl(); //"eyJhbGciOiJIU...";
try {

DecodedJWT jwt = JWT.decode(token);
}
catch (JWTDecodeException exception) {

//Invalid token
}

Using the java-jwt library to verify the HMAC and decode a JWT

1
2
3
4
5
6
7
8
9
10

String token = getTokenFromUrl(); //"eyJhbGciOiJIU...";
try {

Algorithm algorithm = Algorithm.HMAC256("secret");
JWTVerifier verifier = JWT.require(algorithm).build();
DecodedJWT jwt = verifier.verify(token);

}
catch (JWTVerificationException exception) {

//Invalid signature/claims
}

The decode function returns
the claims of the JWT, but

does not verify the signature

The verify function on a
verifier will only return the
claims when the signature

is valid

@PhilippeDeRyck 10

data yxzN...sFno=

yxzN...sFno=

GENERATE HMAC

VERIFY HMAC

yxzN...sFno=

HMAC

SECRET KEY

data

data

Message is the
same as the one
that was signed

Message differs
from the one

that was signed

@PhilippeDeRyck

Your secret should be more
random, and should not be

published on a Powerpoint slide

@PhilippeDeRyck

Your secret should be more
random, and should not be

published on a Powerpoint slide

A key of the same size as the hash output
(for instance, 256 bits for "HS256") or

larger MUST be used with this algorithm.

@PhilippeDeRyck

ASYMMETRIC JWT SIGNATURES

13

data

GENERATE SIGNATURE

VERIFY SIGNATURE

SIGNATURE

PRIVATE KEY

Message is the
same as the one
that was signed

Message differs
from the one

that was signed

PUBLIC KEY

yxzN...sFno=

data

data
yxzN...sFno=

@PhilippeDeRyck

A DISTRIBUTED JWT USE CASE

1Request security token

4 Call API with the JWT

6 Response

5
Use public key to verify JWT
signature and make
authorization decision

3 A JWT security token

2 Generate a JWT and sign
with the private key

PRIVATE

PUBLIC

@PhilippeDeRyck 15

1

JWT Signature Schemes

3
Ridiculous JWT
vulnerabilities

2

JWT Key Management

4

Quiz & Summary

@PhilippeDeRyck

JWT KEY MANAGEMENT

D

? A

B

C

Not using keys at all

Which of these key distribution
mechanisms are used by JWTs?

Static deployment (e.g., in an environment file)

Embedding the key in a JWT

Embedding the location of the key in a JWT

@PhilippeDeRyck

How does the receiver know
which key to use to verify the

signature?

What if there are
multiple possible

keys?

@PhilippeDeRyck

The reserved kid claim represents
a key identifier, helping the
receiver to find the right key

Useful to retrieve a
key from a centralized

key store

@PhilippeDeRyck

The reserved jku claim represents a
URL pointing to a set of public keys

that can be used to verify the signature

Since these keys are publicly available,
the receiver can retrieve them from

this location

The kid claim can be used to select the
right key from the key set

@PhilippeDeRyck

The reserved x5u claim represents the
location of an X.509 certificate

(TLS certificate)

Since the certificate is publicly
available, the receiver can retrieve it

from this location

@PhilippeDeRyck

Without proper verification, a gullible
backend will retrieve the attacker's keys and

use them to verify a malicious JWT token

This setup allows an attacker to provide
arbitrary JWT tokens that will be considered

valid, causing a major vulnerability

@PhilippeDeRyck

.well-known/openid-configuration

@PhilippeDeRyck

@PhilippeDeRyck 25

1

JWT Signature Schemes

3
Ridiculous JWT
vulnerabilities

2

JWT Key Management

4

Quiz & Summary

@PhilippeDeRyck

RIDICULOUS JWT VULNERABILITIES

@PhilippeDeRyck

https://threatpost.com/critical-vulnerabilities-affect-json-web-token-libraries/111943/

“
“

The Authentication API
prevented the use of

"alg: none" with a case
sensitive filter. This
means that simply

capitalising any letter
("alg: nonE"), allowed
tokens to be forged.

https://insomniasec.com/blog/auth0-jwt-validation-bypass

@PhilippeDeRyck

@PhilippeDeRyck

@PhilippeDeRyck 32

1

JWT Signature Schemes

3
Ridiculous JWT
vulnerabilities

2

JWT Key Management

4

Quiz & Summary

@PhilippeDeRyck

SUMMARY

@PhilippeDeRyck

BEST PRACTICES JWT SECURITY

• Choose the proper signature algorithm
• HMACs are only useful internally in an application
• All other scenarios should rely on asymmetric signatures

• Make sure you have a secure way to obtain the public keys of the sender

• Follow JWT security recommendations
• Explicitly type your JWTs
• Use strong signature algorithms
• Use reserved claims and their meaning

• Explicitly verify the security of the backend application
• Libraries should be actively supported and up to date
• JWTs with none signatures should be rejected case-insensitively
• JWTs with invalid signatures should be rejected

@PhilippeDeRyck

This online course condenses dozens of confusing specs
into a crystal-clear academic-level learning experience

https://courses.pragmaticwebsecurity.com

25% discount

Offer expires Feb 25th, 2021

VIRTUAL_OWASP

Use coupon code

Thank you for watching!
Connect on social media for more

in-depth security content

@PhilippeDeRyck /in/PhilippeDeRyck

Still not Jim

